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Abstract—In this paper, it is demonstrated that the compressive response of unidirectionally
reinforced composites may initiate in a micro-buckling mode and subsequently switch to a micro-
kinked configuration. The foregoing possibility derives from a mechanics model that considers
initial fiber misalignments, a non-linear shear response of the matrix, shear deformable fibers, and
stochastic fiber spacings. The last-mentioned non-uniformity in fiber spacings plays a major role in
the generation of fiber kinks.

Various features of the compressive deformation and failure process are exhibited by com-
putational examples.

INTRODUCTION

The compressive response of composites has been studied extensively during the past three
decades by many researchers. Many of the above studies are noted in comprehensive listings
and review articles by Shuart (1985), Camponeschi (1991), Guynn et al. (1992), and Piggott
(1993) and will not be detailed here. Suffice it to say that experimental data on compressive
response exhibit substantial scatter, which is partly attributable to variability of the loading
mechanisms and partly due to its sensitivity to random material flaws and misalignments.
On the other hand, many analytical and computational models predicted compressive
strengths in excess of experimental values. This shortcoming led to an ongoing effort to
construct more complicated models, which incorporate additional material and structural
parameters, to achieve closer correlation between predictions and data.

An intriguing aspect of the compressive response of fibrous composites is their failure
by kinking. In most circumstances, post-failure inspections reveal the presence of tilted
bands of broken fibers, separated along oblique straight lines from the remainder of the
test sample. Since the formation of these so-called kink bands does not appear to accord
with a buckling mode of failure, most existing modeis address the compressive failure of
composites either as a buckling or as a kinking phenomenon, to the exclusion of the other.
These models can be grouped as follows.

(1) Models that consider buckling

These include the work of Rosen (1965), which seems to be the first paper on com-
pressive failure of composites. Considering “shear-mode buckling” that model predicted a
failure stress ocg = Gn/(1 — ¢;), where G, is the shear modulus of the matrix and ¢, the
fiber volume fraction. That prediction is inadequate for two reasons: (a) it gives a value of
ocx that is several times as high as experimental values, (b) the relation gcg ~ {1/(1—¢p)}
contradicts experimental observations, which show that oy grows linearly with ¢ (at least
up to ¢ ~ 0.55) [see Piggott and Harris (1980), Morley (1987)].

Several modifications to Rosen’s model were introduced subsequently. Primarily, these
modifications considered the non-linear shear response of the matrix and initial fiber
waviness [e.g. Wang (1978), Lin and Zhang (1992), Guynn er al. (1992), Highsmith et al.
(1992) and others listed in the aforementioned review articles]. Additional modifications
included the incorporation of fibers’ shear deformation, as by Davis (1975), or the account-
ing for large deformations of the fibers by Yin (1992). Though the latter model stems from
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Fig. I. The fiber-reinforced composite represented by a layered medium.
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a buckling formulation, it is worth noting that it proposes a criterion for kink formation,
which occurs when fibers’ curvature attains a critical value.

(2) Models that consider the a-priori existence of kinks

These include work by Evans and Adler (1978), Hahn and Williams (1986), and
Budiansky and Fleck (1992).

In all the above papers, the fiber-reinforced composites were viewed as lamellar regions
that consist of fiber and matrix layers as shown in Fig. 1. It should be noted that several
investigators [Sadowsky ef al. (1967), Herrmann ez al. (1967), Lanir and Fung (1972), and
Greszczuk (1975)] considered fibers of cylindrical geometry. All these papers assumed linear
elastic behavior of fiber and matrix materials.

The validity of representing fiber-reinforced materials as lamellar regions was ques-
tioned recently by Weitsman and Chung (1994), where severe disparities were shown to
exist between the strain fields within a composite reinforced by hexagonal fibrous arrays
undergoing buckling and analogous fields in a composite that consists of lamellar regions.
This issue is the subject of an ongoing investigation.

The main purpose of the present paper is to present a model for the compressive
response of fiber-reinforced composites that suggests a transitional mechanism from a
micro-buckling form of deformation to a micro-kinking mode of failure. The model employs
the lamellar geometry of Fig. 1 and incorporates a non-linear shear response of the matrix
and linearly elastic, shear-deformable fibers. In addition, the model considers two kinds of
geometrical imperfection, initial fiber wobbliness and non-uniform fiber spacing. The latter
consideration is the novel aspect of this work. In closely spaced fibrous domains, the narrow
matrix regions sustain increased levels of shear strains, which approach yield or failure
limits. The resulting softening in the support provided by the matrix to the fibers is shown
to cause localized fiber failures, accompanied by overburdening the more widely spaced
fibers. Though compressive failure still occurs by buckling, the immediate post-buckled
configuration is shown to consist of kinked fibers. The sudden transition from buckling to
kinking is due to the abrupt variation in the deformed configuration that follows the
buckling instability. This comprehensive accounting for the seemingly disparate phenomena
of buckling and kinking is the main asset of the present model.

Non-uniform fiber spacings were considered by Chung and Weitsman in previous
work (1994a). However, in that work, the response of the fibers was modelled by means of
Bernoulli-Euler beam theory, which ruled out the formation of kinks, since that theory
does not allow for shear deformations. It is interesting to note that, under the constraints
inherent in the Bernoulli-Euler beam theory, the absence of kinks was compensated by the
presence of highly concentrated shear forces in the post-buckling range of response. An
abbreviated version of the current paper with computational results based upon material
data reported by Guynn et al. (1992) appeared recently (Chung and Weitsman, 1994b).

BASIC EQUATIONS

Let a unidirectionally reinforced fibrous composite be represented by a layered medium
that consists of fiber and matrix layers of thicknesses 24 and 2(c— 4), respectively, as shown
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Fig. 2. The shear-mode buckling configuration.

in Fig. 1. Let ¢; = A/c and ¢, = (c—h)/c denote volume fractions where here, and in the
remainder of this paper, subscripts f and m refer to the fiber and matrix, respectively.
Let x and y denote co-ordinates parallel and normal to the layers, with corresponding
displacements « and v.

Consider an initial waviness v, in the fiber layer, given by

to = 0pcos (nx/L) (1)

and let the fibers deflect in a shear mode of buckling as shown in Fig. 2 [Rosen (1965),
Garg et al. (1973)].

The length L prescribes the micro-buckling length associated with compressive loading
N parallel to the fibers. We assume that the matrix layer responds in shear only, sharing a
common displacement v with the fiber, while u,, varies linearly in y across the layer’s
thickness. In addition, we assume that the response of the fiber layer can be modelled by
Timoshenko’s shear-deformation theory, where i denotes the independent rotation of the
planar cross-section.

Accounting for bending effects, the total displacement of a fiber region Uy is given by
[Washizu (1975)]

Ur:l#+;J [(@ +25)* — (5)*1dx =y (2)
0
with the corresponding strains

e = up+3 [0 +16)? — (06)’ 1 — (3a)

e =V =y (3b)

while
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In eqns (2)-(4), and in the sequel, primes denote derivatives with respect to x.
Consider a linear elastic response for the fibers
G'S( = Efs.l;r: Tiy = nyiy (5)

and a non-linear shear stress—strain response for the matrix, scaled by the initial shear
modulus G,

o = GnF(%)- (6)

The total relative deflection between x = 0 and x = L/2 is given by

L./2

A=umum+gfuw+val—wwﬂdx @

0

RANDOM FIBER SPACING

As noted in the Introduction, random fiber spacing accounts for an essentially novel
feature in the present model. Recalling basic notions concerning the statistics of spatially
distributed data and the concept of Voronoi cell tessellation, as employed to represent the
spatial distribution of spherical and cylindrical inclusions within an extended matrix region
(Davy and Guild, 1988), we assume that the cell sizes 2¢ are distributed according to a
Poisson’s point process, with a cumulative distribution function

P(C > ¢) = exp(—c/?). 8)

Ineqn (8), 2¢ is the nominal average of the cell sizes. Since fiber regions cannot overlap,
namely ¢ > 4 (“Gibb’s hard core process’’), eqn (8) is modified to read

c—h
The corresponding probability distribution is
1 c—h
ple) = T XP (— ——c__h>. (10)

Since eqn (4) expresses y%, in terms of ¢; and ¢, = 1 — ¢y, rather than c, it is necessary
to recast p(c) in terms of a probability distribution of the fiber volume fractions p(¢y),
where ¢; = 4/¢. Employing well-established rules of statistical analysis, we obtain

L7y
(ﬁm d)fz P ( J)m ¢f> (11)

For computational purposes, the distribution function p(¢¢) will be discretized and
expressed by a finite number of Dirac delta functions.

plop) =



Buckling/kinking compressive failure of fibrous composites 2333

FIELD EQUATIONS FOR RANDOMLY SPACED LAYERS IN COMPRESSION

From eqn (4), and subsequently eqn (6), it follows that both %, and <7, are functions
of the random variable ¢, and thereby random as well. However, to ascertain a common
displacement A for all layers, we assume identical displacements « and v for all layers in
spite of the randomness in their widths 2¢. We surmise that the effects of random spacing are
taken up by distinct values of the rotation i, which vary from layer to layer. Consequently, a
discretized version of p(¢;) that corresponds to M values of (¢;), (i = 1,... M) will necessi-
tate the consideration of M values of Y,(i = 1,... M).

The above assumption involves an approximation whose validity can be estimated. It
will be shown below that a solution for u, v, ¥, ..., that is based upon energy con-
siderations for the entire composite fails to satisfy equilibrium conditions for any of the
M individual layers. The magnitudes of the unequilibrated transverse forces (distributed
transverse loads g.(x), i = 1,... M) provide the required estimate of error. It turns out that
the above magnitudes never exceed 1% of all calculated stress values, attesting to the
suitability of the approximation.

Application of the principle of virtual work to the entire composite [Washizu (1975)],
upon accounting for the randomness of the cell sizes ¢, yields

f ‘p(c) H (0%06, + 15,67, dVi+ J
Ve

h v,

m

THO7n de} dc+ NSA = 0. (12)

(¢

From eqns (3)-(6), which contain the random variables ¢; and ¢,, and since by
hypothesis ¥ depends on c, it follows that the expression inside the parenthesis on the left
side of eqn (12), which applies for a cell of size c, is a function of the random variable c.

Consider a discrete probability distribution, represented by W, commensurate with
eqns (10) and (11), which corresponds to M cells of widths 2¢; (i = 1,... M). In this case,
the integral in eqn (12) is replaced by a sum, and we obtain

M L2 % &
2y W,f {j (o oek +75,.6y%,) dy+‘[ ™oy, d)«} dx+ NSA = 0. (13)
i=1

0 0 h

Note that det, 8y, and 3y contain M + 2 independent variables, namely du, dv” and
oy (i=1,...M).

Substitution of eqns (2)—(7) into eqn (13), integrating by parts, and collecting terms
that multiply du, 6¢’, and &y, (i = 1, ... M), we obtain the following (M +1) field equations
forvand y;(i=1,... M)

— N +vo)+2h ; {Gi(v' —¥) + (/D) GLEF W + ¢/ )]} = 0 (14)

— Bl —2hG(v' =) + 2hGLF [0 + (do/ )y ] = 0 (i=1,... M) (15)
with the boundary conditions
vi(L/2)=0, ¥ (0)=0 (i=1,...M), and v'(0) =0. (16)

Note that the coupled system of eqns (14) and (15) is non-linear because of the presence of
the function F, which is non-linear in its argument.

In eqn (15), I = #*/12. Note that the variation du yields the trivial result N = con-
stant = N4 and requires no further consideration.

Unlike eqns (15), which apply to the M individual cells, eqn (14) expresses the lateral
equilibrium of the entire composite. To ascertain the lateral equilibrium of each cell it is
necessary to impose distributed transverse loads g{x) (i =1,... M) and consider their
virtual work
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"L/2
j govdx.

0

Re-employing the principle of virtual work for each individual cell, collecting terms
that multiply dv, and utilizing the solution for v and y;, which corresponds to the system of
eqns (14)—(16), we obtain

g, = N("+v5) = 2h{Ge(0" —¥)) + (P / 9 G F v + (/$m) i1} )

The relative magnitudes of ¢,/t7, serve as measures for the validity of the approximation
inherent in assuming common « and v in all layers. It will be shown in the next section that,
for polymeric composites, all the above ratios appear to be less than 102,

A non-dimensional version of eqns (14) and (15) is obtained upon introducing
X = x/L, V =v/L, and the non-dimensional factors

, 2GhL® , 2GwHL’ ., NL?
=g ™7 T EL Y TEL

Then, upon putting ¥ = dV/dX, eqns (14) and (15) read
— (Y +Y)+af Y+ Z} Wil — ot + (Pu/ )i F[Y + (¢/ )]0} = 0 (18)

and

Wi+ (Y =) — o FY + (¢i/dm)d] =0 (i=1,... M) (19)
with the boundary conditions

Wi1/2) =0, ¥,0) =0, (i=1,...M) and Y(0)=0. (20)

RESULTS

The solution to eqns (18)—(20) was obtained numerically and pertains to graphite/
PEEK (APC-2) composites. The interval 0 < X < 1/2 was subdivided into K equal sub-
intervals, and derivatives were expressed by means of central finite differences. The dis-
cretized system of equations was solved iteratively to obtain values of ¥ and ¢, for increasing
load N in the pre-buckling range. In accordance with observations by Johnson et al. (1991),
the matrix material was assumed to fail in those regions where y5, > 0.05. The response in
the post-buckling range was evaluated by prescribing the location X* where y7, = 0.05 in
the most recently failed cells and evaluating the corresponding deflected shape V(X) and
applied load N.

Complete details are given in the Appendix.

The computations employed values of £; = 214 GPa and G; = 13.8 GPa, which reflect
the significant transverse isotropy of the AS4 fibers [Aboudi (1991)]. The in-situ shear
stress-strain response of the PEEK resin was based upon the reduction of data collected
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Fig. 3. Non-linear shear response of PEEK at 21°C. In-situ response is reduced from composite
AS4/PEEK data by Kyriakides and Liechti (1993) and compared with the behavior of neat resin.
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Fig. 4. The selected discretization of the random distribution expressed in eqn (10) into four distinct
values of ¢y, with average value ¢, = 0.6.

by Kyriakides and Liechti (1993). The in-situ data are shown in Fig. 3, where they are
contrasted with data for unreinforced PEEK.
The in-situ shear data were expressed by the relation

T T\
o

where 4 = 3096 MPa, B = 169.93 MPa, ¢ = 0.23781, and 1 is in MPa. As noted earlier,
shear failure was assumed to occur at a strain of y, = 0.05. In addition, we took L = 400d
and d, = 4d, as suggested by Kyriakides and Liechti (1993), with a fiber diameter d = 7.6
4m.

The computational scheme considered four random cell sizes, namely four discrete
random values of ¢, that accord with the distribution function of eqn (11). These are shown
in Fig. 4,

Computational results are shown in Figs 5-12.
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Fig. 5. Applied stress vs non-dimensional maximal lateral deflection v(0)/A. The pre-buckling stage
0A is followed by the post-buckling stage AB.
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Fig. 6. Plots of the non-dimensional deflection }’ vs the non-dimensional distance X at various levels
of applied stress.

Figure 5 exhibits the variation of the applied stress o with the non-dimensionalized
maximal lateral deflection v(0)/4. The short plateau-like region at 1.5 < v(0)/4 < 1.8 is due
to matrix failure, which initiates and spreads within the cell with the highest fiber volume
fraction (¢, = 0.975). Failure by buckling occurs at ¢ = 1220 MPa (point A). In a dis-
placement-controlled experiment, a further increase in A will be accompanied by a drop in
o and a corresponding reduction in 5(0)/h. The post-buckling response is represented by
the segment AB in Fig. 5.

Results for the non-dimensionalized displacement V and slope Y are plotted versus
the non-dimensional distance X in Figs 6 and 7 for various load levels in both pre- and
post-buckling ranges. As may be expected, these curves are approximately proportional to
cos X and sin X in the pre-buckling range, where deformed shapes are dominated by the
form of the initial misalignment. Note, however, the substantial deviations in the deformed
configurations within the post-buckling range, where they no longer resemble the cos X
shape of the initial misalignment. The most significant departures occur near X = 0.5,
where matrix failures initiate.

The distributions of 77, versus X are plotted in Figs 8(a)-8(d). These distributions are
shown within the four distinct cells and for various levels of applied stress. Figure 8(a)
corresponds to a pre-buckled stress level o = 654 MPa, and Fig. 8(b) corresponds to the
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B0k

Matrix Shear Stress (MPa)

6=1220 (= 6cr)
A =100 S
0 01 02 03 04 05 0 01 02 03 04 05

Matrix Shear Stress (MPa)

-80 USSR SO O ...................... 80 o
1| o=730(Post) | ! : 0=722(Post) | :

=100 e 100 : 1 ‘ i
0 01 02 03 04 05 0 01 02 03 04 05

X X
Fig. 8. The distribution of matrix shear stress vs the non-dimensional distance X within the four

distinct cells (—— ¢y = 0.175;, ——= ), =0.45; OO0 O QO ¢; =08, ¢ ¢ & & & ¢, = 0975) at
various levels of applied stress: (a) ¢ = 654 MPa (pre-buckling) ; (b) ¢ = 1220 MPa (buckling) ; (c)
o = 730 MPa (post-buckling) ; and (d) ¢ = 722 MPa (post-buckling. Point B in Fig. 5).

buckling stress ¢ = 1220 MPa (point A in Fig. 5) when the matrix within the cell with
¢r = 0.975 failed over the range 0.16 < X < 0.5.

Figures 8(c) and 8(d) correspond to post-buckling loads of ¢ = 730 MPa and ¢ = 722
MPa, respectively. The latter stress corresponds to point B in Fig. 5, which lies directly
below point A in that figure. Note the spreading of the failure region in the cell with ¢, = 0.8
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Fig. 9. The distribution of fiber shear strain vs the non-dimensional distance X in the four distinct
cells (symbols and stress levels the same as in Fig. 8).

between the post-buckling stages depicted in Figs 8(c) and 8(d). This means that matrix
failure, which was confined to 049 < X < 0.5 at ¢ =730 MPa expanded over
0.45 < X < 0.5 as the post-buckling load level proceeded to drop to ¢ = 722 MPa. There
were also increases in t3, within the unfailed cells with ¢ = 0.45 and ¢; = 0.175.

The central theme of the present article is demonstrated in Figs 9(a)-9(d). These figures
exhibit the fiber shear strains %, versus the non-dimensional distance X for the same
circumstances as in Figs 8(a)-8(d). The essential feature of these figures develops within
the post-buckling range, where discontinuities in y,, are noted to occur simultaneously
within all cells. These discontinuities are located at X = 0.49 in Fig. 9(c) and at X = 0.45
in Fig. 9(d). No such discontinuities exist in the pre-buckling stage or at buckling.

We suggest that the foregoing discontinuities in y%, portend the onset of fiber kinking.

Figure 10(a) exhibits the computed values of the lateral loads ¢,(X) versus X within all
four cells at buckling, namely at ¢ = 1220 MPa. These loads, which were evaluated through
eqn (17), are much smaller than 7, = 70 MPa, attesting to the validity of the premises of
the present model. For purposes of comparison, the same lateral loads are plotted versus
X in Fig. 10(b) when the fibers are modelled as Bernoulli-Euler beams by employing a
previous analysis by Chung and Weitsman (1994a).

Additional effects of random fiber spacings are exhibited in Figs 11 and 12. Figures
11(a) and 11(b) concern the evolution of fiber curvatures with load within the pre-buckling
range and demonstrate the contrast between uniformly spaced and randomly spaced cir-
cumstances. It may be noted that the randomly spaced case and the onset of localized
failures gives rise to highly concentrated curvatures, with magnitudes that exceed by three
or four folds the levels that correspond to the uniformly spaced case. If one accepts the
premise of Yin (1992) that kinks occur when a fiber’s curvature exceeds a certain threshold
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Fig. 10. Lateral stresses ¢,(x) at ¢ = o¢g = 1220 MPa vs the non-dimensional distance X in the
four distinct cells: (a) shear deformable fibers; (b) fibers deforming as Bernoulli-Euler beams.
(O =025, @ ¢ =045; - ¢=0.75; ¢r = 0.975).

level, then the current analysis indicates the existence of an enhanced likelihood of kinking
due to non-uniform fiber spacing. Such kinking may precede failure by buckling.

Finally, the effect of random fiber spacing on compressive strength is shown in Fig.
12, where buckling failure loads are plotted versus the fiber volume fraction ¢;. The results
for the random case were computed for average values ¢; (with the distribution shown in
Fig. 4) that are identical with the constant ¢; for the uniformly spaced case. Note that
random fiber spacings result in lower strengths with ¢;, which accords with experimental
observations by Piggott and Harris (1980).

CONCLUSIONS

A mechanics model was presented for the compressive response and failure of unidi-
rectionally reinforced polymeric composites loaded parallel to the fiber direction. The
analysis accounted for the non-linear shear response of the resin, including its ultimate shear
strain, and for shear deformable fibers. The model incorporated two kinds of geometric
imperfections, namely, initial fiber waviness and random fiber spacings. With the exception

of the work by Chung and Weitsman (1994a,b), the latter kind of imperfection has not
been considered elsewhere.

R
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Computational results were evaluated within both pre- and post-buckling ranges of
compressive response. The paramount result of this work is an indication that a band of
discontinuity in the fibers’ shear strains can occur immediately beyond failure by buckling.
Such a discontinuity prognosticates the formation of kink bands, which are observed in
many failed specimens.

It was shown that accounting for random fiber spacings results in lower predicted
values of compressive strength which correlate better with data. In addition, the foregoing
randomness yields a relationship between compressive strength and fiber volume fraction
that concurs with experimentally observed trends.
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APPENDIX

Upon putting & = dy;/d X, the non-dimensionalized governing equations (18) and (19) read

M
—B2(Y+Yo)+o Y+ Y w( oy +ok ¢'"'F>—- 0
i=1

®n
4 +a (Y~ §)—oiF, =0 (A1)
dX "
dy,
H—g, (i=1,...M)

The first equation applies to the entire composite, as implied by the summation over all the Voronoi cells,
whereas the second and third apply to the M individual cells. We thus have 2M + 1 equations. This system of non-
linear coupled differential equations can be converted into algebraic equations by means of a finite differences
scheme.

Let N denote the number of nodes along the buckling span, resulting in N—1 intervals of length AX and
mid-nodes. For the mid-node between the nth and (n+ 1)th nodes, which is indicated by n+1/2 in the following,
the finite difference version of eqn (A1) is

il P
=2 (Yo + YO.n+l/2)+a;Yn+l,Z+Z“’< G120l é Fl.n+lf2)='0
i=1 i

é:n+l f:n lan-H '_'!/i.n

AX “/Z(Yu-uz = Wins112) —“yan:.H 12 =0 AX = Cinv12- (A2)

At this stage, the non-linearity due to a non-linear matrix response expressed by F(y,,) is still retained within
the system. This non-linearity can be eliminated by considering the incremented quantities Y+6Y, £+6¢, and
¥+ 3y, which satisfy eqns (A2). Linearization is then achieved upon expanding the non-linear terms in Taylor
series, and retaining the first-order terms only. The first of eqns (A2) then results in

1 M
8Y, i =5 — ‘(Rn+1/z+ Z WiPi.n»rmé‘l’,,n-l/z) (A3)
i=1

Z W Qs 12 —A

where

dF
Pacta = af -2 (d?)mu/z

[
OQinvip = 0f +0p——{ —
" ¢m‘ [y

M ¢
Riip= iz(Yn», o ha Yo.wuz)‘“% Yorin+ Z w:<ajz'1/i,n+l,’2 ¢m m+1/2>~
i=1 f

As shown in eqn (A3), § Y, which is common to all cells, can be represented explicitly in terms of the other
variables 8. This enables §Y to be substituted into the remaining equations (A2). The substitution of eqn (A3)
into the truncated Taylor expansions of the last two of equations (A2) yields the following:

5ci.n+ [ 56:.)1

M
AX +k§l Thimer2(OWknir +0%in) — Q”’H s

= (Wi +0Y1,) = Ui

81 +0Ein\  SWinir =~V
_(c.l :)+w_u Vo_y g

2 AX

where
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Euﬁ»l _é[n
S, 2 2 2
Sinvin = — T “ar(yn+|/z—Wr.n-l/z)"‘*mFr,nH/z
WI\'Pk‘n+l,'2Pi.n+l/l
Tiinc12 = M TN
e
2(2 W,Qr.n+|,z */‘»')
i=1
U =S P.",n+l:2Rn+1/2
n+ 12— Din+ 1,27 M
2
(Z W;Qnml,'z‘)* >
=i
wmv] —wi‘n -
Viewr12 = — AX FCingti2-

It should be noted that eqns (A4) apply to each individual cell. Thus we have M values of ¢ and y; at any
mid-node. Collecting 8¢, and dy,s and forming the vectors

{55} = {55“652“”5@4}7
Ov} = {0y,.00,,... Y.} "
eqn (A4) can be expressed in matrix notation as
(68,1} {66,} {66,101 _
oy Fri oy e g A - 0 *9

Here, A4,, B,, and C, are 2M by 2M matrices, and D, is a 2M by 1 vector. Their components are given by

B, (i, M+i)=— X
BAM+i,M+k)y="T, ;1
. . Qf.n+l,’2
BM+iM+) =T, o= =5
Aui D) = —3
A, (i M+i) = :
n( g {) - AX
) 1
A M40 = ——

A M+ MAE) =T

AM AL M4 =T, - Lori2

2
Caliyi) = =3
C,(M+ii)= l—
AX
D,()=Viperp2

DM+ = Ui

In the above, the rangesof kand iare k = 1,...i—1,i+1,...M,and i = 1,... M, respectively.

Denote {{3} {5y} }7 by {®}. The governing equation for the entire length of the composite is then obtained
by collecting eqn (AS). We therefore have

(4] [C] 0 (@} {Di}

[B:]  [4:] [ {@.} {D.}
e : = : . (A6)

[By-2l  [Aw-2]  [Cy-2] {®v-2} {Dy_>}

0 [Byvi]  [An-i] {On-1} {Dw-1}

This banded algebraic equation can be readily solved by means of the LU decomposition [Na (1979)]. Since
the solution @ is a vector of increments, it s accumulated at each iterative step to compute ¢ and . At the end of
each iteration, the norm of @ is calculated to check for convergence. When it becomes sufficiently small, the
iteration is halted, and cumulative values of £ and ¥ are regarded as the convergent solution. The parameter Y
is computed by using eqn (A3) and accumulated in the same manner to obtain Y. Deflection, curvature, stress
components, and other quantities are computed by means of a post-processing subroutine.
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To determine the buckling load. both low and high bounds of applied stress and number of computation
intervals are inputed in the program. The highest load value that still gives a convergent solution is taken to be
the buckling load.

As shown in Fig. 5. an unloading process is observed in the post-buckling regime. In contrast with the
presumed linear elastic behavior of the fibers, it is necessary to define clearly the stiffness of the matrix during
unloading. For that purpose, isotropic hardening and elastic unloading of the matrix were assumed. This choice
of unloading behavior was guided by data for graphite/epoxy (Lamborn and Schapery, 1993), which approximated
to elastic unloading to some extent.

The post-buckling analysis employs the buckling solution as a starting stage, which establishes all the initial
values of strains and displacements that correspond to the buckling load, P,. The post-buckling computation
postulates a Jocation X* in the most recently failed cell, which extends the region of failed matrix in that cell to
X* < X < 1/2. Consequently, that region, like previously failed matrix regions under P, does not contribute to
the shear stiffness of the composite. Subsequently, the composite is subjected to an assumed load level P < P,
and the numerical scheme is employed to obtain values of all corresponding stresses and strains. Note that,
wherever the scheme predicts unloading, it is programmed to follow a linear elastic unloading path of the matrix.
The value of 7 at the foregoing location X* is then compared with y,. If y(X*) > 7, the level of the load P is
reduced iteratively until the establishment of equality, y(X*) = 7,, is within a prescribed tolerance. In this manner,
we generate the load—deflection curve in the post-buckling regime.



